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In aerodynamics a wing and the vortex sheet behind it are often simulated by a system 
of discrete vortices. A rigorous Justification for this simulation in the case of a steady- 
state flow of an incompressible llquid around a thin curvilinear profile has been given in 
[1]. 

The idea of dividing up the bearing vortex surface around which the flow occurs, leads 
to the method of discrete vortices, which has been successfully used to calculate the aero- 
dynamic characteristics of aircraft [2-5]. 

Theoretical schemes with a uniform distribution of discrete vortices and control points 
in which the boundary conditions of the corresponding boundary value problem have to be satis- 
fied has obtained the widest application. For these schemes the convergence of the approxi- 
mate solution of the one-dlmensional singular integral equation with a Cauchy kernel to the 
accurate solution has been proved in any fixed section inside the integration interval [6, 
7], and also the convergence over the whole interval with respect to the norm in L~ [8] for 
all permissible classes of the solutions. At the same time it has been pointed out that the 
uniform theoretical scheme gives an irremovable error in the approximate solution in the 
region of the ends of the interval [9, 4, 6]. 

The use of theoretical schemes with a nonuniform distribution of the discrete vortices 
and control points, enabling one, in principle, to obtain a uniform approximation of the in- 
tensity of the discrete vortices to their corresponding accurate values over the whole inter- 
val, opens up new possibillties. This scheme was apparently first proposed in [9]. The 
question of the Justification for the use of nonuniform schemes has not been investigated in 
practice. 

It should be noted that a key feature in the problem of constructing a solution of the 
singular integral equations by the method of discrete vortices is a problem of the approxima- 
tion of Cauchy-type integrals by a corresponding quadrature formula. This paper is devoted 
to an investigation of this question. 

i. Consider the Cauchy-type integral 
1 

z--% ' (I.i) 
0 

As regards the function y(x), we will as- 

(1.2) 

8] and a2 

defined in the interval [0, i] of the real axis. 
sume that it can be represented in the form 

~, (x)= ~/-~-q~ (x), 

where the function ~(x) satisfies the Hblder condition with index a~ for x ~ [0, 
for x ~ (~, i], assuming that 0 < ~p~l, p =1, 2; 0 < ~ < i. 

We will divide the section [0, i] by the points co = 0, c,, ..., c n = 1 into n elements 
of length h m ffi c m -- Cm_ x, m ffi i, ..., n. We will introduce the quantities 

C7~ 

r r n =  J" y ( x ) d x ,  m =  t,  . . . ,  n (1.3) 
Cm-- 1 
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and two separate points xt, ..., x n and xo~, ..., xo n, which satisfy the conditions 

x,~ ~ [c,,~_~, cm], m = - I  . . . .  , n; 

Zo~ ~ (c~,_. c~+0, k = t , . . .  , n -  i ,  zo ~ ~ (c ._~,  c ~l. 

In accordance with these conditions we will represent x m and Xok in the form 

x,n = cm-~ + h , ,~ t~ ,  Xo~ = c~_~ + h~v~, m ,  k = 1, . . . , n,  

where the coefficients Pm, ~k can vary in the limits O~Pm~l, 0 < v k < 2. 

We will introduce the function 

2 G (Xo~) = ~,~_ 
m~l Xoh~ 

(1.4) 

( 1 . 5 )  

( l . 6 )  

defined at the points xo ~ [0, i], k = i, ..., n. 

We will consider the following problem: to construct a sequence of sets of points xo~, 
..., Xon and xt, ..., Xn, which satisfy conditions (1.4), for which the function (1.6) con- 
verges uniformly to the Cauchy-type integral (i.i) at all points Xok ~ [0, i] when n in- 
creases without limit. 

To solve this problem we can arrange the coefficients p,, ..., ~n and ~,, . . . ,  ~n assum- 
ing the function 7(x) and the points co~ ctp ...D Cn to be given. 

Note that in terms of hydrodynamics the function 7(x) is the intensity of the vortex 
layer, F m is the intensity of the discrete vortex in the element [Cm_tp Cm] ~ x m is the coor- 
dinate of this vortexD Xok is the coordinate of the control point, the function F(xok) de- 
fines the velocity of the liquid induced by the continuous vortex layer at the point xok, 
and the function G(xok) is the velocity induced at the same points of the dlscrete-vortex 
system. 

2. We will confine ourselves to the case of a uniform splitting of the section [0, i] 
into elements. Then c m =mh, h = i/n, m = 0, I, ..., n. We will introduce into the section 
[0, i] two regions [0, ~,],[6a, i] and a section [0, ~]j assuming that 0 < 6a < ~ < 6t < i. 
We will denote by N,j nl, and Na, respectlvely, the number of elements in the sections [0, 
~z]j [0, ~]p [0, ~a]. In accordance with (1.2), we will assume that in each region the func- 
tion y(x) can be represented in the form 

~(x) = ~ ( x ) / V ~ ,  ~ ( z )  = r  - �9 ~ x ~ [o, ~ l ,  
(2.1) 

~(x) = ~ ( x ) V ~  - z, ~ ( x )  = ~ ( x ) l V ~  ~ x ~ [~,  t l, 

functions Ct, Ca for all x~ [cm_t, c m] the following inequalities are saris- where for the 
fied: 

1 0 1 ( x ) - - O  l(xm) l~<Atn -=~, m = t , . . . , N 1 ,  

I O~ (z) - O, (x~) l <-< A, n-=', ra=  N~ + i, . . . ,  n. 
(2 .2 )  

Here At and Aa are positive constants. We will further put 

i ~  = sup  I ~  (x)I, M ,  = sup I'I '~ (x)I. 
[o,o~1 18~,,-,..1 

We will represent the functions F(xok), G(xok) in the form 

F (Xo,,) = E F.~ (xo,~), 

c m 

~r (x) dx Fm 
F . ,  (xol.,) ~= ~ _ Xo k 

C m - - 1  

Taking in=o accoun= Eqs. 

Gm(xok)  = ~ a,~(Xo~); (2 .3 )  

- - ,  Gm (Xok) = % , _  Xo k. 

(2.4), (1.3), (2.1), and (2.2) 

[ t '  o Fm (Xo~) = r (x,O jm (Xo,~) ~- 

(Xo ) = (Xo ) [t + o 

(2.4) 

(2.5) 
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w~e[e the index p = 1 for m = i, ..., Nl and p = 2 for m = Ni + I, 

fkP) m~P) m ' g are given by the following expressions: 

(V~ -- V~) (era - ~ + ~) /~)= V-5~h In (]/;ii~]/~)(]/,Wc--i--]/~)' ,n=/=k, ] ~  1, ( 2 . 6 )  

.(x) V q2 In i ]/~ + Vi-:'~) (I/k-?-7-- V%). 
IT + J~+. = ~ V~- vi=:n) (Vk~-T~ + V~)' 

2 [.i/ V{ (2.7) 1~) = ~ n- m +1- ~ "n- m 2 

(r r,~-~) (V{ + r -- ,,, + 0 ] 

( V { + v , ~ - ~ ) ( V { - v , , . , , ~ + i )  : '  , ~ # k  k + 1 ,  
X In 

+h+i = ~ n -- k + l -- ]i/n-- k -- i -- In - __-=----- ~ -- . . . . . .  k :f: n, 
- = '  " ( V ~ + Y , ~ - - k - - , ) ( W - - k + ~ - - V ~ ) J '  

2[ V_:- ~+V~] 
I$~) = - -V--Z~ I ~ In ~ _ V{ ; 

g~> 2]/n V ' m - - ~ i  g~)__. 2 (n--mWt)8/2--(n--m) 3/~. (2 .8 )  
= ,n--~h--l+~' 3] /n  m - - n + x ~ - - t  p % .  ' 

o~ = k - -  i-~v~, T~ = n - - k - { -  t - - w k .  (2.9) 

Note that when deriving these equations for m = k + i we chose ~p(X k) as the value of Cp" 

(Xk+~). 
We will now investigate the difference between the functions F and G at the point Xok, 

assuming k = i, ..., n:. Taking Eqs. (2.3)-(2.8) into account we have 

N I 

F(xo~)--G(Xo~)= Z m~(x=)[l~)(~o~)--g~)(Xo~)] + ~ %(~,~)[f2(~o~)_g~>(~o~)]. (2.1o) 
m=l m=Nl+l 

Here we have omitted the common factors 1 + O(n'~P) (p = 1.2) on the right side of the ex- 
pression, which are unimportant in investigating the convergence of the function G(xok) to 
F(xok). In addition, when ~k = 1 the writing of the first sum for m = k, k + 1 is condl- 

tional, since for these values of 9k only the sum fk (I) + ff~)k+~ has any meaning. 

We will estimate each term separately in Eq. (2.10). We will first consider the first 
sum. Taking the above notes into account this sum can be converted to the form 

N1--1 

A.~ % 61)1 (Xm) [/(m 1) (Xoh) -- a(1)~m '(Xoh)J" = (I)1 (XN1) SN l(i) (O.h) _~_ Z '  [(~l (Xr), -- (D 1 (xr+l)] S(r 1) (o'k), 
m=l r=l 

where the prime denotes summation over all r, apart from r - k, while 

s~ ) (~) = ~ [~> (~o~)- ~){~o~}]. #1.~-1 

It follows from Eqs. (2.6) and (2.8) that when ]m -- k] >> 1 

/(2 (~o~)- ~)(-o~)= o ( V~ k<;-n-_ ~, j. 
This enables us to conclude that 

~'I s~>(~) < r~ . 
where B~ is a certain constant, and 8 is an arbitrary number which satisfies the condition 
0 < 13 < 0.5. Hence, taking inequalities (2.2) into account we obtain the estimate 

I/9"1-1 [ 2A1BI ~[  [r (~,) - r (x,+~)l S$ ~> W~) <~ �9 k[~n~z -o.5 

We will now choose the coefficients ~,, ..., ~nt and ~,, ..., ~N~ 
S(~) Nx = 0. Then the estimate of the first sum on the right side of Eq. 
the estimates (2.11). 

�9 .., n, while the functions 

(2.11) 

in such a way that 
(2.10) agrees with 
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TABLE i 

h vh(o; 

t 0,55 
2 0,52 
3 0,51 
4 0,51 
5 0,5 

n - -  I 0,5 
n 0,38 

S (I) = 0 leads to the following transcendental equation: The requirement N, 

N I 

V ' ~ §  2V-a- ~ ~ ]/Ta--Wm.--1 (2.12) 
In V ~ - V ~  m=1 ~ = 0 ,  k = i ,  . . . , n l .  

For specified values of the coefficients ~m the roots of this equation are the quantities a k, 
connected with the coefficients ~k by Eq. (2.9). It is also permissible to assign the coef- 
ficients ~k or qk with a certain ~m as solutions of the system of equations (2.12). Examples 
of these solu=ions are given below. 

We will estimate the second sum in Eq. (2.10). Equations (2.7) and (2.8) enable one to 
obtain the following asymptotic expressions for n--m >> i, m- k >> I: 

N ) (Xok) - g~)(Xok) = 0 ( ;z3/2 

Hence we have the following estimates: 

I/~) (Xo~) - g~) (x~ 1 ~< ~ .~ ,  c:  = con~t > o, o < ~ < 0.5, 
m=N1+l 

[ M~C2 

m=/Vl+l 

Collecting all the estimates together we obtain =hat for k = i, ..., n~ 

IF(~o~)--~(Xo~)l~ 2.4~B~ +T ~.~+~ (2.13) 
k~ua l -o .5  k~uOo1+o .s �9 

In a similar way we obtain an estimate of the difference between the functions F and G at the 
points Xok for k = n, + i, ..., n 

2 A , B , M 1 C I ( i )  
I F (Xok) - -  G (Zoh) ~< n%+~_o. 5 + ~ + 0 ~ , ( 2 . 1 4 )  

where Ba and C~ are appropriate constants. In this case Eq. (2.12) becomes 

~fn - -  N~. q- V ~  t ~ (n --  m + t) a/~ -- (n -- m) 3/2 
Vn--N 2 l / ~  In z.~ =0, / ~ = n l + . t  , . n. (2.15) 2 Vn Ng,V- { -3 n--m--'rk-Pt--ttm ""' -- m=Ni+l 

The solution of this equation enables one to determine the coefficients ~k connected with T k 
by relation (2.9) for specified ~m, or the coefficients ~m for specified values of ~k" 

From estimates (2.13) and (2.14)we have: 

THEOREM. Suppose the function y(x) for x ~[0j 1] is represented in the form (1.2), 
where ~(x) satisfies a H~Ider condition wi~h index u,, 0.5 < u, ~ i, for x ~ [0,~] and aa  
0 < ua ~-~1, for x ~(~, 1], 0 < ~ < i. A sequence of sets of points xo,, ..., Xon and x~, 
..., x n exists satisfying conditions (1.4), for which the function (1.5) converges uniformly 
to a Cauchy-type integral (1.1) at all points xak ~ [0, 1], when n increases without limit. 

3. Analysis of Eqs. (2.12) and (2.15) shows that there is an infinite number of sets 
of points Xak, Xm (k, m = i, ..., n) satisfying Eqs. (2.12) and (2.15) and conditions (1.4). 
We will consider some of these. 
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TABLE 2 

n 81 8z es ~n/2" en--2 en~i 8n 

~=i/4,  va=3/4 25 97 t9 6,t 0,40 0,1t 0,09 �9 --4,3 
50 t37 27 l i  0,15 0,03 0,02 --3,1 

100 t94 38 16 0,06 --0,01 ~-O,Oi --2,2 

Local approxima- 
tion 

25 
50 

t00 
0,39] 0,t2 

t,7 0,17 ] --0,08 

0,tt 
0,15 
0,06 

0,21 
0,03 

--O,Ol 

0,t8 
0,02 

--0,01 

0,17 
--0,08 
--0,07 

We will assume that all the coefficients Pm = B = cons=. Then, as N + ~ (N = N:, n -- 
N2) the solutions of Eqs. (2.12) and (2.15) have the form 

va(~) = oh(0 ) q- ~, k = l . . . .  , n. ( 3 . 1 )  

Calculation shows that relation (3.1) is also satisfied in practice for a finite value of 
N >> 1. Hence, when ~m = co=st it is sufficient to calculate the coefficients Vk(0). The 
results of such a calculation for N = i00, rounded off to two decimal places, are shown in 
Table i. 

A calculation with N = i000 gives the same results. According to Eqs. (1.5) and (3.1) 
the coordinates of the discrete vortices and the control points are given by the expressions 

Xm = ( m  - -  t -i- ~ ) / n ,  xoh = ( k  - t + oh(O) -t- ~ ) / n ,  ( 3 . 2 )  

m ,  k = 1 . . . . .  n. 

N o t e  t h a t  when ~ > 1 - -  ~ k ( 0 )  t h e  c o n t r o l  p o i n t  l i e s  o u t s i d e  t h e  l i m i t s  o f  t h e  e l e m e n t  [Ck_~ , 
Ck] , k = I, 2, .... 

An example of the calculation of the error in approximating the Cauchy-type integral 
(i.I) by Eq. (1.6) when y(x) = /(I -- x)/x for a uniform distribution of the discrete vortices 
in the interval [0, i] is given in Table 2. The quantity 

~h = [~ - -  G ( ~ k ) / F ( ~ k ) ] . t 0 0 % ,  k = 1 . . . . .  n .  

The calculation was carried out using two methods of choosing the coordinates of the discrete 
vortices and the control points ~ = 1/4, u k = 3/4 and the local approximation. 

The firs= method is widely used in the method of discrete vortices [2-5], while the second 
is based on Eqs. (3.1), (3.2), and the data in Table i. Note that the calculation using the 
second method for ~ = 0, 0.25, and 0.5 gave identical results, which are shown in Table 2. 

Calculation showed that in the middle part of the interval [0, 1] the error in approxi- 
mating integral (i.i) by Eq. (1.6) is practically the same in both methods. In the region of 
the ends of the interval the first method gives a considerable error, which close to the end 
x = 0 increases as n increases. The local approximation with the values of n considered 
reduces the error in evaluating the integral (i.i) by two orders of magnitude in the region 
of the ends of the interval, and this error decreases as n increases. 

Another example of the local approximation is the theoretical scheme proposed in [9]. 
According to this scheme, the discrete vortices are placed at the "center of gravity" of =he 
vortex layer in each section [Cm-~ , Cm], while the control points are chosen, as additional 
analysis shows, depending on the solution of Eqs. (2.12) and (2.15). 

The above examples illustrate the considerable possibilities of local approximation of 
a vortex layer by a system of discrete vortices. The main feature of this approximation is 
the solution of the problem for a certain part of the vortex layer irespectlve of the effect 
of its remaining part. 

In this connection the results obtained can be used to approximate vortex layers with 
a different form of behavior of the intensity Y(x) in the region of the ends of the layer. 
However, in this case it must be borne in mind that the number of control points and their 
position depend on the form of the function y(x). For example, in the case of the function 
y(x) = /x(l -- x)~(x), bounded at both ends of the vortex layer, uniform convergence of the 
function (1.6) to the integral (i.i) occurs at n + 1 points for n discrete vortices situated 
in the middle of each element [Cm_1, c m] of the vortex layer. The coordinates of the control 
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points are defined in the region of the ends of the interval [0, i] by the solution of Eq. 
(2.15). According to the data given in Table I 

Xol = 0A2/n ,  Xo~ = ( k - - t ) / n ,  k = 2 , . . . ,  n ,  xo~+l  = ~ - - X o l .  

For the function y(x) = ~(x)//x(l -- x), not bounded at both ends of the interval [0, i], 
uniform convergence of function (1.6) to integral (i.I) occurs at n -- 1 points. In this 
case the discrete vortices should be again arranged in the middle of each element, while 
the coordinates of the control points 

Xo~ = ( k - - O , 5 + v h ( O ) ) / n ,  k = 1 . . . .  , h i ,  Xoh = (k + 0.5 - - v ~ - h ( 0 ) ) / n ,  k = nl + t . . . . .  n - - l ,  

where the coefficients ~k(0) are found from Table i. 
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THE WAKE BEHIND THE BEARING BODY IN A VISCOUS LIQUID 

O. S. Ryzhov and E. D. Terent'ev UDC 532.516/517 

i. Vortex Sheet. Suppose the bearing body (a wing of finite span) is loaded in a uni- 
form flow of incompressible liquid. Assuming that the viscosity can be neglected, the most 
effective method of calculating the inductive resistance of the wing is as follows. The 
bearing surface and the contact interface formed behind it, and passing through which the 
tangential component of the velocity of vector is removed, are replaced by a system of at- 
tached and free vortices. The simplest version of the method operates in all with one con- 
nected vortex, which simulates the wing, and a pair of free vortices trailing from its ends. 
This system is sometimes called a horseshoe-shaped vortex, and it gives a lifting force (and 
circulation) that is constant over the whole area of the bearing surface, falling suddenly to 
zero at the ends of the wing. This scheme is, of course, only a rough approximation to the 
actual picture of the flow. 

For a more accurate description of the flow field we must start from the fact that the 
lifting force changes over the length of the bearing surface, falling smoothly to zero at 
its end sections. The circulation also changes over the span of the wing, and from each point 
of its trailing edge a free vortex runs off which then moves downward with respect to the flow. 
This system of free vortices forms a vortex sheet. Although these representations were de- 
veloped long ago [i, 2] they have not been of any value up to now [3]. In recent years to 
calculate the self-lnduced motion of vortex filaments the method of joining the external and 
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